Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Diabetes, suppl Supplement 1 ; 69, 2020.
Article in English | ProQuest Central | ID: covidwho-2305367

ABSTRACT

Background and Aims: Postprandial thermogenesis is thought to be important for the control of metabolism. This process could be reflected by minute changes in body temperature after glucose load. In this study, we measured body temperature before and its change during a glucose challenge and investigated the relationships with anthropometric and glycemic traits. Methods: We prospectively studied 383 volunteers (251 females, 132 males) with a mean age of 46.6 (SD ± 16) years and a BMI of 27.9 kg/m2 (SD ± 5.9). All participants underwent a 75 g oral glucose tolerance test (OGTT) and repeated bilateral measurements of intra-auricular temperature at time points 0, 30 and 120 minutes during the OGTT using a tympanic thermometer (Covidien Genius 2). Results: Baseline temperature was 0.17°C lower in males compared to females (p = 0.001) and inversely associated with age (p < 0.0001). During the OGTT, there was a significant increase in body temperature (0.18 ± 0.34°C). This response was present in females and males. BMI was negatively associated with the increase of temperature during the OGTT (p = 0.0147). Participants with higher BMI displayed higher fasting temperatures, but less increase of temperature during the OGTT. Body temperature was not associated with glycemia, insulin sensitivity or insulin secretion, neither in females nor males. Conclusions: There is a robust increase in body temperature during a glucose load that can be captured by intra-auricular temperature measurements. We did not detect any associations of the body temperature with glucose metabolism, arguing against a major contribution of the variability of body temperature in the pathogenesis of diabetes. However, the rise in temperature in response to oral glucose is reduced in obesity and might therefore be involved in body weight regulation.

2.
Nat Rev Endocrinol ; 2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2245448
3.
Die Diabetologie ; 2022.
Article in German | Web of Science | ID: covidwho-2148934

ABSTRACT

Is prediabetes a disease? This question is not easy to answer. First of all, it is necessary to systematically analyze the term prediabetes. The following aspects must be considered: (1) how is prediabetes defined;(2) how frequently does prediabetes occur in the population;(3) is the risk of certain diseases increased in prediabetes;and (4) what is the significance of prediabetes in daily clinical practice? If a clear picture emerges when these aspects are considered, one can conclude whether prediabetes is a disease.

4.
Front Med (Lausanne) ; 9: 875430, 2022.
Article in English | MEDLINE | ID: covidwho-1938628

ABSTRACT

Advanced age, followed by male sex, by far poses the greatest risk for severe COVID-19. An unresolved question is the extent to which modifiable comorbidities increase the risk of COVID-19-related mortality among younger patients, in whom COVID-19-related hospitalization strongly increased in 2021. A total of 3,163 patients with SARS-COV-2 diagnosis in the Lean European Open Survey on SARS-CoV-2-Infected Patients (LEOSS) cohort were studied. LEOSS is a European non-interventional multi-center cohort study established in March 2020 to investigate the epidemiology and clinical course of SARS-CoV-2 infection. Data from hospitalized patients and those who received ambulatory care, with a positive SARS-CoV-2 test, were included in the study. An additive effect of obesity, diabetes and hypertension on the risk of mortality was observed, which was particularly strong in young and middle-aged patients. Compared to young and middle-aged (18-55 years) patients without obesity, diabetes and hypertension (non-obese and metabolically healthy; n = 593), young and middle-aged adult patients with all three risk parameters (obese and metabolically unhealthy; n = 31) had a similar adjusted increased risk of mortality [OR 7.42 (95% CI 1.55-27.3)] as older (56-75 years) non-obese and metabolically healthy patients [n = 339; OR 8.21 (95% CI 4.10-18.3)]. Furthermore, increased CRP levels explained part of the elevated risk of COVID-19-related mortality with age, specifically in the absence of obesity and impaired metabolic health. In conclusion, the modifiable risk factors obesity, diabetes and hypertension increase the risk of COVID-19-related mortality in young and middle-aged patients to the level of risk observed in advanced age.

5.
Lancet Diabetes Endocrinol ; 10(4): 284-296, 2022 04.
Article in English | MEDLINE | ID: covidwho-1915200

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) has become an epidemic, much like other non-communicable diseases (NCDs), such as cancer, obesity, diabetes, and cardiovascular disease. The pathophysiology of NAFLD, particularly involving insulin resistance and subclinical inflammation, is not only closely linked to that of those NCDs but also to a severe course of the communicable disease COVID-19. Genetics alone cannot explain the large increase in the prevalence of NAFLD during the past 2 decades and the increase that is projected for the next decades. Impairment of glucose and lipid metabolic pathways, which has been propelled by the worldwide increase in the prevalence of obesity and type 2 diabetes, is most likely behind the increase in people with NAFLD. As the prevalence of NAFLD varies among subgroups of patients with diabetes and prediabetes identified by cluster analyses, stratification of people with diabetes and prediabetes by major pathological mechanistic pathways might improve the diagnosis of NAFLD and prediction of its progression. In this Review, we aim to understand how diabetes can affect the development of hepatic steatosis and its progression to advanced liver damage. First, we emphasise the extent to which NAFLD and diabetes jointly occur worldwide. Second, we address the major mechanisms that are involved in the pathogenesis of NAFLD and type 2 diabetes, and we discuss whether these mechanisms place NAFLD in an important position to better understand the pathogenesis of NCDs and communicable diseases, such as COVID-19. Third, we address whether this knowledge can be used for personalised treatment of NAFLD in the future. Finally, we discuss the current treatment strategies for people with type 2 diabetes and their effectiveness in treating the spectrum of hepatic diseases from simple steatosis to non-alcoholic steatohepatitis and hepatic fibrosis.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Prediabetic State , COVID-19/complications , COVID-19/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Humans , Liver/metabolism , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Prediabetic State/metabolism
7.
Diabetes ; 69:N.PAG-N.PAG, 2020.
Article in English | Academic Search Complete | ID: covidwho-1456239

ABSTRACT

Background and Aims: Postprandial thermogenesis is thought to be important for the control of metabolism. This process could be reflected by minute changes in body temperature after glucose load. In this study, we measured body temperature before and its change during a glucose challenge and investigated the relationships with anthropometric and glycemic traits. Methods: We prospectively studied 383 volunteers (251 females, 132 males) with a mean age of 46.6 (SD ± 16) years and a BMI of 27.9 kg/m2 (SD ± 5.9). All participants underwent a 75 g oral glucose tolerance test (OGTT) and repeated bilateral measurements of intra-auricular temperature at time points 0, 30 and 120 minutes during the OGTT using a tympanic thermometer (Covidien Genius 2). Results: Baseline temperature was 0.17°C lower in males compared to females (p = 0.001) and inversely associated with age (p < 0.0001). During the OGTT, there was a significant increase in body temperature (0.18 ± 0.34°C). This response was present in females and males. BMI was negatively associated with the increase of temperature during the OGTT (p = 0.0147). Participants with higher BMI displayed higher fasting temperatures, but less increase of temperature during the OGTT. Body temperature was not associated with glycemia, insulin sensitivity or insulin secretion, neither in females nor males. Conclusions: There is a robust increase in body temperature during a glucose load that can be captured by intra-auricular temperature measurements. We did not detect any associations of the body temperature with glucose metabolism, arguing against a major contribution of the variability of body temperature in the pathogenesis of diabetes. However, the rise in temperature in response to oral glucose is reduced in obesity and might therefore be involved in body weight regulation. Disclosure: A. Vosseler: None. L. Fritsche: None. J. Hummel: None. C. Dannecker: None. N. Stefan: None. A.L. Birkenfeld: None. H. Haering: None. A. Fritsche: None. R. Wagner: Advisory Panel;Self;Novo Nordisk A/S. Speaker's Bureau;Self;Novo Nordisk A/S. Other Relationship;Self;Eli Lilly and Company. M. Heni: Research Support;Self;Boehringer Ingelheim Pharmaceuticals, Inc., Sanofi. Speaker's Bureau;Self;Novo Nordisk A/S. Funding: German Federal Ministry of Education and Research (01GI0925) [ABSTRACT FROM AUTHOR] Copyright of Diabetes is the property of American Diabetes Association and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

8.
Mol Metab ; 53: 101262, 2021 11.
Article in English | MEDLINE | ID: covidwho-1253402

ABSTRACT

OBJECTIVE: Obesity, in particular visceral obesity, and insulin resistance emerged as major risk factors for severe coronavirus disease 2019 (COVID-19), which is strongly associated with hemostatic alterations. Because obesity and insulin resistance predispose to thrombotic diseases, we investigated the relationship between hemostatic alterations and body fat distribution in participants at risk for type 2 diabetes. SUBJECTS: Body fat distribution (visceral and subcutaneous abdominal adipose tissue) and liver fat content of 150 participants - with impaired glucose tolerance and/or impaired fasting glucose - were determined using magnetic resonance imaging and spectroscopy. Participants underwent precise metabolic characterization and major hemostasis parameters were analyzed. RESULTS: Procoagulant factors (FII, FVII, FVIII, and FIX) and anticoagulant proteins (antithrombin, protein C, and protein S) were significantly associated with body fat distribution. In patients with fatty liver, fibrinogen (298 mg/dl vs. 264 mg/dl, p = 0.0182), FVII (99% vs. 90%, p = 0.0049), FVIII (114% vs. 90%, p = 0.0098), protein C (124% vs. 111%, p = 0.0006), and protein S (109% vs. 89%, p < 0.0001) were higher than in controls. In contrast, antithrombin (97% vs. 102%, p = 0.0025) was higher in control patients. In multivariate analyses controlling for insulin sensitivity, body fat compartments, and genotype variants (PNPLA3I148MM/MI/TM6SF2E167kK/kE), only protein C and protein S remained significantly increased in fatty liver. CONCLUSIONS: Body fat distribution is significantly associated with alterations of procoagulant and anticoagulant parameters. Liver fat plays a key role in the regulation of protein C and protein S, suggesting a potential counteracting mechanism to the prothrombotic state in subjects with prediabetes and fatty liver.


Subject(s)
Body Fat Distribution , COVID-19/complications , Diabetes Mellitus, Type 2/epidemiology , Fatty Liver/epidemiology , Hemostasis/physiology , Aged , COVID-19/blood , COVID-19/physiopathology , Cohort Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Fatty Liver/blood , Fatty Liver/diagnosis , Fatty Liver/physiopathology , Female , Humans , Insulin Resistance/physiology , Liver/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Protein C/analysis , Protein C/metabolism , Protein S/analysis , Protein S/metabolism , Randomized Controlled Trials as Topic , Risk Factors , SARS-CoV-2/pathogenicity
9.
Nat Rev Endocrinol ; 17(3): 135-149, 2021 03.
Article in English | MEDLINE | ID: covidwho-1044258

ABSTRACT

Obesity and impaired metabolic health are established risk factors for the non-communicable diseases (NCDs) type 2 diabetes mellitus, cardiovascular disease, neurodegenerative diseases, cancer and nonalcoholic fatty liver disease, otherwise known as metabolic associated fatty liver disease (MAFLD). With the worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), obesity and impaired metabolic health also emerged as important determinants of severe coronavirus disease 2019 (COVID-19). Furthermore, novel findings indicate that specifically visceral obesity and characteristics of impaired metabolic health such as hyperglycaemia, hypertension and subclinical inflammation are associated with a high risk of severe COVID-19. In this Review, we highlight how obesity and impaired metabolic health increase complications and mortality in COVID-19. We also summarize the consequences of SARS-CoV-2 infection for organ function and risk of NCDs. In addition, we discuss data indicating that the COVID-19 pandemic could have serious consequences for the obesity epidemic. As obesity and impaired metabolic health are both accelerators and consequences of severe COVID-19, and might adversely influence the efficacy of COVID-19 vaccines, we propose strategies for the prevention and treatment of obesity and impaired metabolic health on a clinical and population level, particularly while the COVID-19 pandemic is present.


Subject(s)
COVID-19/epidemiology , Obesity/epidemiology , COVID-19/virology , Humans , Pandemics , Risk Factors , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL